Ultrasound data for laboratory calibration of an analytical model to calculate crack depth on asphalt pavements
نویسندگان
چکیده
This article outlines the ultrasound data employed to calibrate in the laboratory an analytical model that permits the calculation of the depth of partial-depth surface-initiated cracks on bituminous pavements using this non-destructive technique. This initial calibration is required so that the model provides sufficient precision during practical application. The ultrasonic pulse transit times were measured on beam samples of different asphalt mixtures (semi-dense asphalt concrete AC-S; asphalt concrete for very thin layers BBTM; and porous asphalt PA). The cracks on the laboratory samples were simulated by means of notches of variable depths. With the data of ultrasound transmission time ratios, curve-fittings were carried out on the analytical model, thus determining the regression parameters and their statistical dispersion. The calibrated models obtained from laboratory datasets were subsequently applied to auscultate the evolution of the crack depth after microwaves exposure in the research article entitled "Top-down cracking self-healing of asphalt pavements with steel filler from industrial waste applying microwaves" (Franesqui et al., 2017) [1].
منابع مشابه
Mechanistic-Empirical Analysis of Asphalt Dynamic Modulus for Rehabilitation Projects in Iran
In the Mechanistic–Empirical Pavement Design Guide (MEPDG), dynamic modulus of asphalt mixes is used as one of the input parameters in pavement analysis and design. For in-service pavements, MEPDG method uses a combination of some field and laboratory tests for structural evaluation of asphalt layers in rehabilitation projects. In this study, ten new and rehabilitated in-service asphalt pavemen...
متن کاملInvestigating the Performance of Cracked Asphalt Pavement Using Finite Elements Analysis
Occurrence of top down and bottom up fatigue cracking in asphaltic pavements is common. Conventional pavement analysis methods ignore the existence of cracks in asphaltic layers. However, it seems that the responses of cracked pavement would not be the same as a pavement without crack. This paper describes effects of crack type, position and length, and vehicles tire inflation pressure and axle...
متن کاملIncremental layerwise finite element formulation for viscoelastic response of multilayered pavements
This paper provides an incremental layerwise finite element formulation for the viscoelastic analysis of multilayered pavements. The constitutive behavior of asphalt concrete is represented by the Prony series. Layerwise finite element has been shown to provide an efficient and accurate tool for the numerical simulation of laminated structures. Most of the previous research on numerical simula...
متن کاملInvestigating the Relation among British Pendulum Number, Mean Texture Depth and Asphalt Content in Hot Mix Asphalt
Pavement surface texture and its skid resistance are two key safety parameters of highways, which both are influenced by pavement characteristics. This research is done on a newly constructed asphalt pavement (Qom-Garmsar freeway) in Iran. The goal is investigating the relation between skid resistance and pavement texture in order to asphalt content changes in Hot Mix Asphalt. Mean Texture Dept...
متن کاملDynamic Hydraulic Conductivity (Permeability) of Asphalt Pavements
External pressures applied to a saturated pavement pore structure are often dynamic due to the repeated tire loading. Therefore, a dynamic permeability constant is more realistic representation of the response of a pavement pore structure than the Darcy’s permeability. To investigate the unsteady (dynamic) fluid flow in asphalt pavements, a 3D fluid flow model was developed using the lattice Bo...
متن کامل